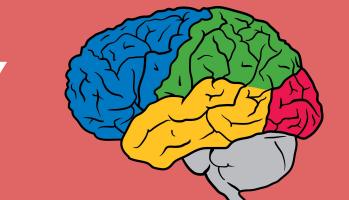
Adaptive Temporal-Difference Learning for Policy EVALUATION WITH PER-STATE UNCERTAINTY ESTIMATES

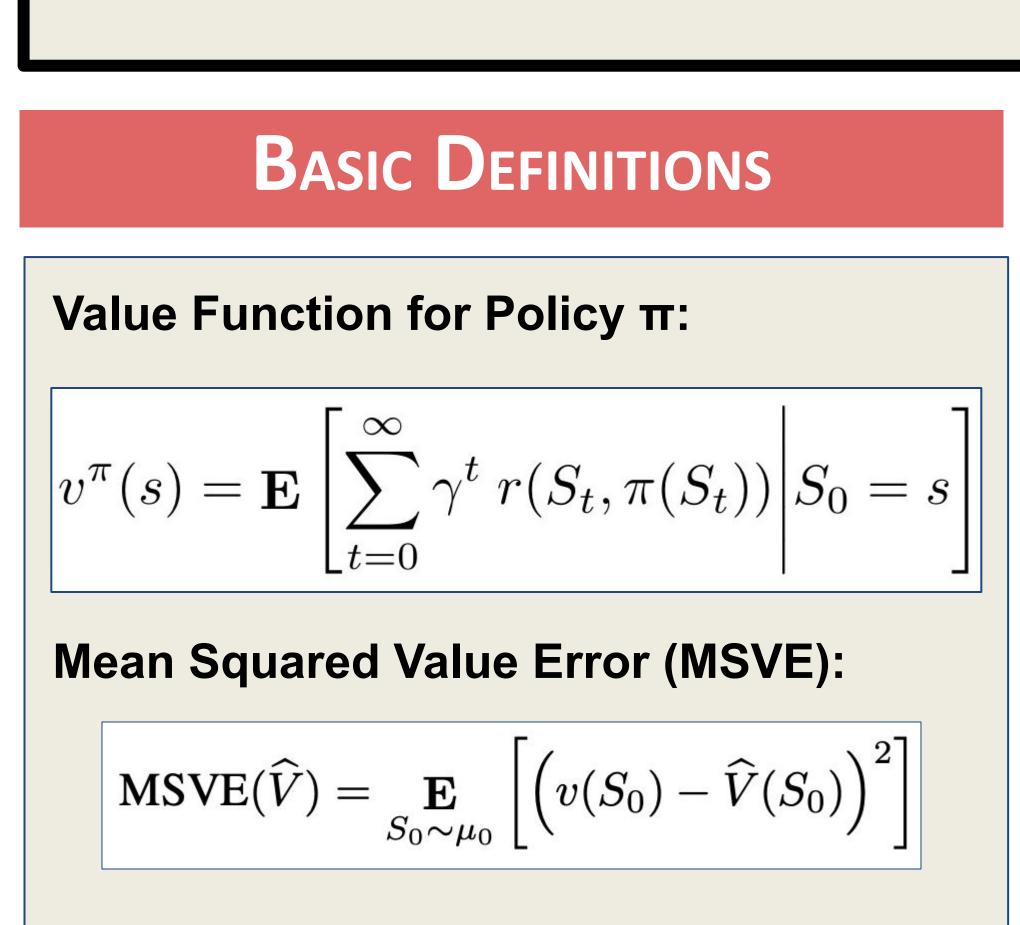


Hugo Penedones^{*}, Carlos Riquelme^{*}, Damien Vincent, Hartmut Maennel, Timothy Mann, Andre Barreto, Sylvain Gelly, Gergely Neu

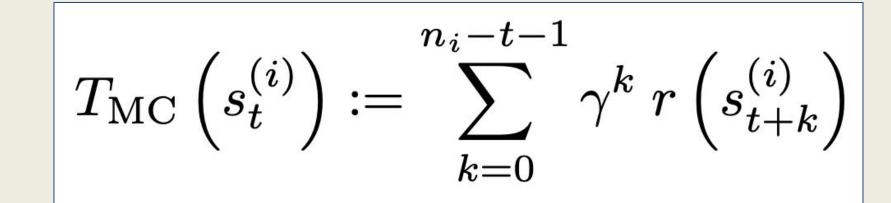
Google DeepMind

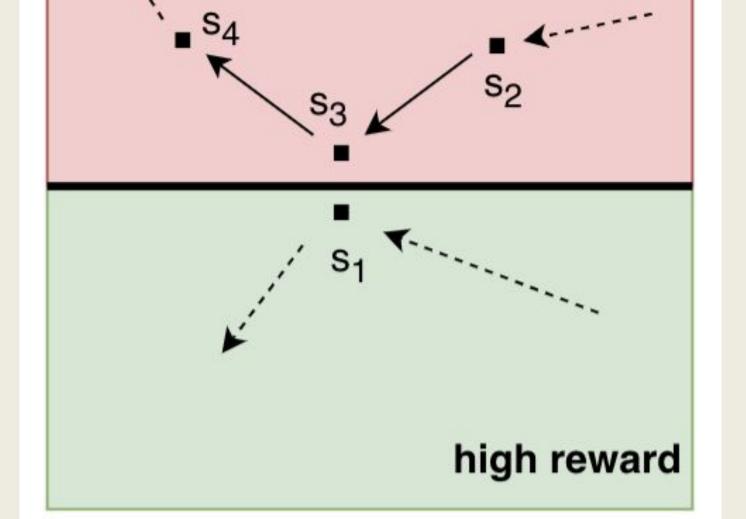
In 20 seconds. Temporal Differences learning (TD) propagates approximation for policy evaluation. We errors adaptively choose between the TD and MC targets via MC confidence intervals.

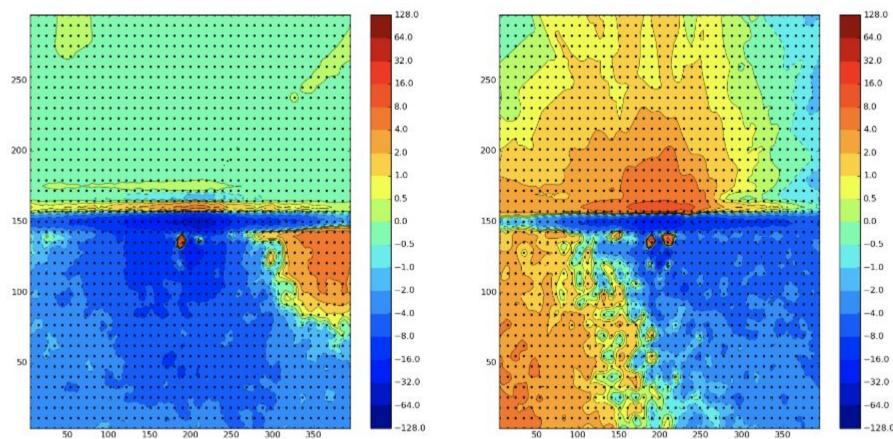
The Problem	The Adaptive TD Algorithm
Value Leakage with Function Approximation	$ \begin{array}{l} \label{eq:constraints} \hline \textbf{Input: Confidence level $\alpha \in (0,1)$. Trajectories τ_1,\ldots,τ_n generated by policy π.} \\ \hline \textbf{Let S be the set of visited states in τ_1,\ldots,τ_n. Initialize $\widehat{V}(s) = 0$, for all s.} \\ \hline \textbf{Compute Monte-Carlo returns dataset as in (3): $D_{MC} = \{(s,T_{MC}(s))_{s\in S}\}$.} \\ \hline \textbf{Fit confidence function to $D_{MC}: \textbf{Cl}_{MC}^{\alpha}(s) := (L_{MC}^{\alpha}(s), U_{MC}^{\alpha}(s))$.} \\ \textbf{repeat} \\ \textbf{for $i = 1$ to n do} \\ \textbf{for $t = 1$ to n do} \\ \textbf{for $t = 1$ to $ \tau_i - 1$ do} \\ s_t^{(i)} \text{ is the t-th state of τ_i.} \\ T_{\text{TD}(0)} = r(s_t^{(i)}) + \gamma \widehat{V}(s_{t+1}^{(i)}) \\ \textbf{if $T_{\text{TD}(0)} \in (L_{MC}^{\alpha}(s_t^{(i)}), U_{MC}^{\alpha}(s_t^{(i)}))$ then $T_{i,t} \leftarrow T_{\text{TD}(0)}$ \\ \hline \textbf{else} \\ T_{i,t} \leftarrow (L_{MC}(s_t^{(i)}) + U_{MC}(s_t^{(i)})/2$ \\ \textbf{end if} \\ \text{Use target T_{i,t to fit $\widehat{V}(s_t^{(i)})$.} \\ \textbf{end for $end for$ \\ \textbf{end for $end for$ \\ \textbf{until epochs exceeded} $ \end{array} $
Function approximation tradeoffs (s ₁ and s ₃) will be propagated through TD updates to s ₂ .	Algorithm 1: Adaptive TD 1. Train an ensemble of value networks with MC target. 2. Train a single value network with an adaptive target: for each training state s:



Monte Carlo Target:







a. By default, use TD target.

b. If TD target doesn't fall in MC interval (low_{MC} , high_{MC}):

TD_0 Target:

$$T_{\text{TD}(0)}\left(s_{t}^{(i)}\right) := r\left(s_{t}^{(i)}\right) + \gamma \ \widehat{V}\left(s_{t+1}^{(i)}\right)$$

CONFIDENCE INTERVALS

We fit **m** networks V_i on the MC target data:

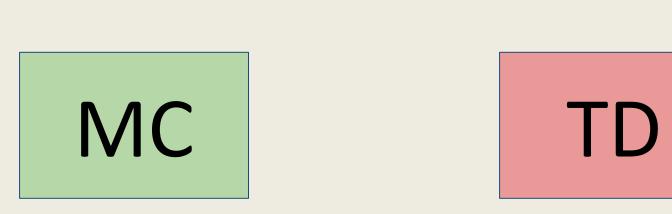
 $\mathbf{D} = \{(s, T_{MC}(s)) | s \in S\}.$

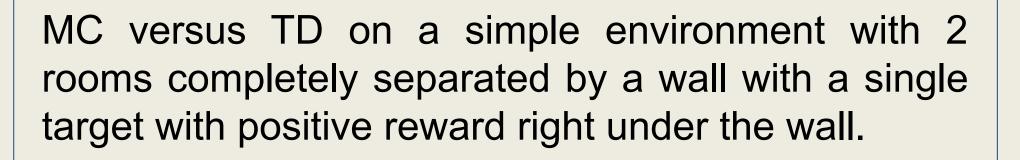
Given a new state **s**, get **m** predictions $v_i = V_i(s)$.

Assumption: $v_1, v_2, ..., v_m \sim F$ for some **F**.

Then, compute its **predictive** interval at level 1- α .

In the paper we assume $\mathbf{F} = \mathbf{N}(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$, for unknown (μ, σ) leading to:





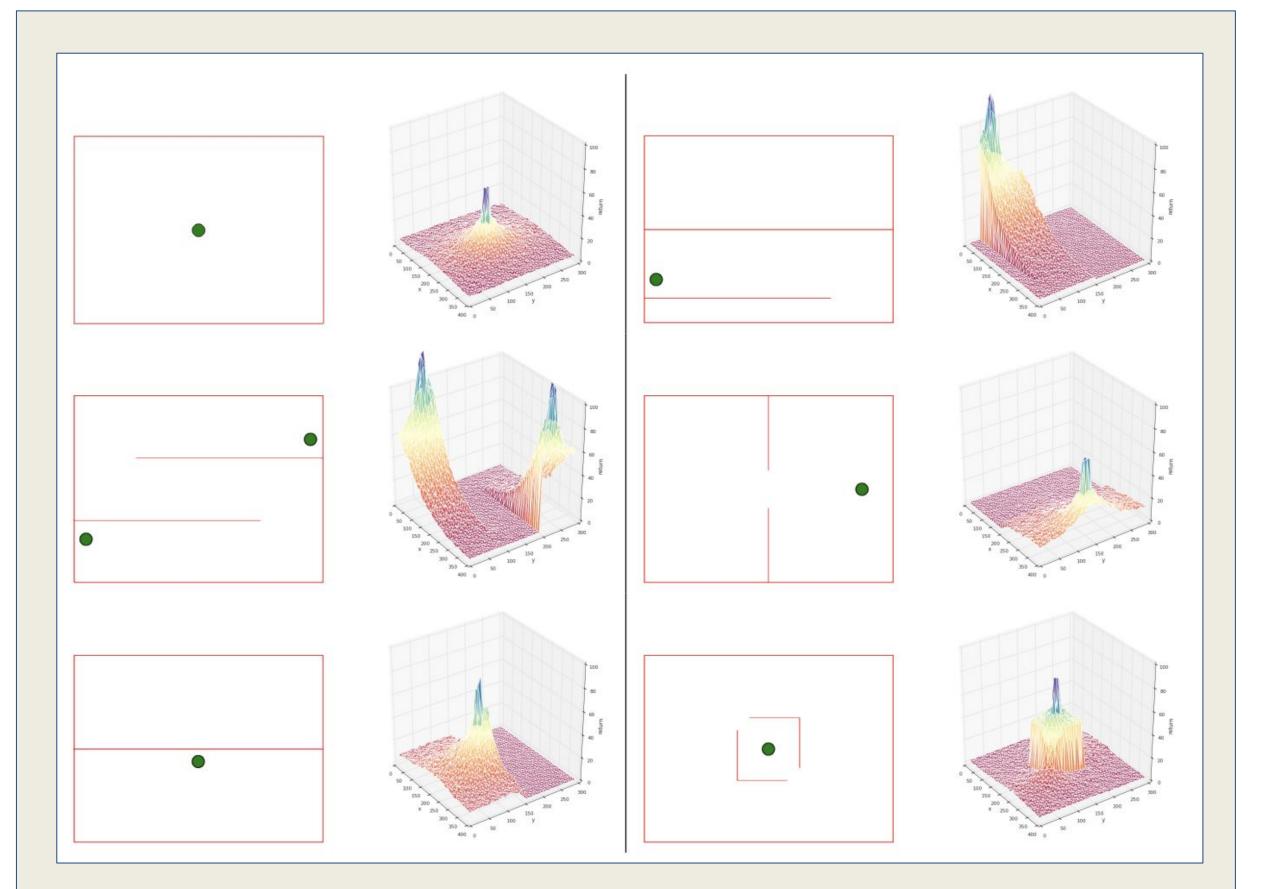
For each state s, the heatmaps show:

 $\hat{V}(s) - V(s)$

The true value on the upper half of the plane is zero. MC overestimates the values of a narrow region right above the wall, due to function approximation With TD, these unavoidable limitations. approximation errors also occur, but things get worse when **bootstrap updates propagate errors** to much larger regions.

i. Use $(low_{MC} + high_{MC}) / 2$ as target.

LAB-2D EXPERIMENTS

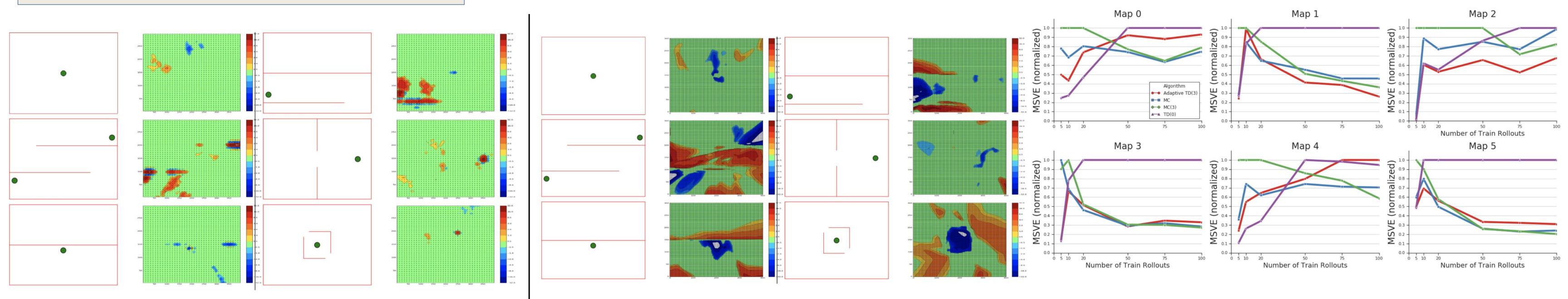


$$\overline{v} - z_{\alpha} \hat{\sigma}_m \sqrt{1 + 1/m} \le v_{m+1} \le \overline{v} + z_{\alpha} \hat{\sigma}_m \sqrt{1 + 1/m}$$
where $\overline{v} = \sum_i v_i/m$, and $\hat{\sigma}_m^2 = \sum_i (v_i - \overline{v})^2/(m-1)$

Other ways to estimate uncertainty can be used.

CONFIDENCE IN PRACTICE

MSVE RESULTS



MC intervals mismatch with ground true value function

TD and MC intervals mismatch. Use MC there.